$\displaystyle \sum_{k=1}^n k^3=\left\{ \frac{1}{2}n(n+1) \right\}^2$ の証明【数学的帰納法】
公式
$$\displaystyle \sum_{k=1}^n k^3=\left\{ \frac{1}{2}n(n+1) \right\}^2$$
$\displaystyle \sum_{k=1}^n k^3 = 1^3+2^3+\cdots +n^3$ が $\displaystyle \left\{ \frac{1}{2}n(n+1) \right\}^2$ であることを数学的帰納法で証明してみよう。
証明のイメージ
$$\begin{aligned}
&\left\{ \frac{1}{2}n(n+1) \right\}^2 + (n+1)^3 \\
& = \frac{1}{2^2}(n+1)^2 \left\{ n^2 + 4(n+1) \right\} \\
& = \frac{1}{2^2}(n+1)^2 (n+2)^2 \\
& = \left\{ \frac{1}{2}(n+1)((n+1)+1) \right\}^2
\end{aligned}$$
公式. $\displaystyle \sum_{k=1}^nk^3 =\left\{ \frac{1}{2}n(n+1) \right\}^2$.
任意の自然数 $n$ について, 等式 $\displaystyle \sum_{k=1}^n k^3=\left\{ \frac{1}{2}n(n+1) \right\}^2$ が正しいことを数学的帰納法によって証明する.
$n=1$ のとき, 左辺は $1^3=1$ であり, 右辺は $\left\{ \frac{1}{2}\cdot 1 \cdot (1+1) \right\}^2=1$ である. ゆえに, $n=1$ のとき等式は成り立つ.
$n=\ell \geqq 1$ のとき, $\displaystyle \sum_{k=1}^n \ell^3=\left\{ \frac{1}{2}\ell(\ell+1) \right\}^2$ と仮定する.
$n=\ell+1$ のとき, 等式の左辺 $\displaystyle \sum_{k=1}^{\ell+1} k^3$ を計算していく.
$$\begin{aligned}
&\sum_{k=1}^{\ell+1} k^3 = 1^3 + \cdots + \ell^3 + (\ell + 1)^3 \\
& = \left\{ \frac{1}{2}\ell(\ell+1) \right\}^2 + (\ell+1)^3 \\
& = \frac{1}{2^2}(\ell+1)^2 \left\{ \ell^2 + 4(\ell+1) \right\} \\
& = \frac{1}{2^2}(\ell+1)^2 (\ell+2)^2 \\
& = \left\{ \frac{1}{2}(\ell+1)((\ell+1)+1) \right\}^2
\end{aligned}$$
この式は $n=\ell + 1$ のとき, 示す等式の右辺である.
よって, $n=\ell$ のとき等式が成り立つと仮定すると, $n=\ell+1$ のときも等式が成り立つことが示せた.
数学的帰納法により, すべての自然数 $n$ について, 等式 $$\displaystyle \sum_{k=1}^n k^3=\left\{ \frac{1}{2}n(n+1) \right\}^2$$ は正しい.